Digital Implementation of Artificial Neural Network for Function Approximation and Pressure Control Applications
نویسنده
چکیده
The soft computing algorithms are being nowadays used for various multi input multi output complicated non linear control applications. This paper presented the development and implementation of back propagation of multilayer perceptron architecture developed in FPGA using VHDL. The usage of the FPGA (Field Programmable Gate Array) for neural network implementation provides flexibility in programmable systems. For the neural network based instrument prototype in real time application. The conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGA have higher speed and smaller size for real time application than the VLSI design. The challenges are finding an architecture that minimizes the hardware cost, maximizing the performance, accuracy. The goal of this work is to realize the hardware implementation of neural network using FPGA. Digital system architecture is presented using Very High Speed Integrated Circuits Hardware Description Language (VHDL)and is implemented in FPGA chip. MATLAB ANN programming and tools are used for training the ANN. The trained weights are stored in different RAM, and is implemented in FPGA. The design was tested on a FPGA demo board. KeywordsBackpropagation, field programmable gate array (FPGA) hardware implementation, multilayer perceptron, pressure sensor, Xilinx FPGA.
منابع مشابه
Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملPredicting the Coefficients of Antoine Equation Using the Artificial Neural Network (TECHNICAL NOTE)
Neural network is one of the new soft computing methods commonly used for prediction of the thermodynamic properties of pure fluids and mixtures. In this study, we have used this soft computing method to predict the coefficients of the Antoine vapor pressure equation. Three transfer functions of tan-sigmoid (tansig), log-sigmoid (logsig), and linear were used to evaluate the performance of diff...
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کامل